Prerequisites

Before you begin, make sure you have created a vSphere Bootstrap cluster.

Name your cluster

  1. Give your cluster a unique name suitable for your environment.

  2. Set the CLUSTER_NAME environment variable with the command:

    export CLUSTER_NAME=my-vsphere-cluster
    CODE

Create a new vSphere Kubernetes cluster

Follow these steps:

  1. Use the following command to set the environment variables for vSphere:

    export VSPHERE_SERVER=example.vsphere.url
    export VSPHERE_USERNAME=user@example.vsphere.url
    export VSPHERE_PASSWORD=example_password
    CODE

  2. Ensure your vSphere credentials are up-to-date by refreshing the credentials with the command:

    dkp update bootstrap credentials vsphere
    CODE

3. Generate the Kubernetes cluster objects by copying and editing this command to include the correct values, including the VM template name you assigned in the previous procedure:

To increase Dockerhub's rate limit use your Dockerhub credentials when creating the cluster, by setting the following flag --registry-mirror-url=https://registry-1.docker.io --registry-mirror-username= --registry-mirror-password= on the dkp create cluster command.

dkp create cluster vsphere \
  --cluster-name ${CLUSTER_NAME} \
  --network <NETWORK_NAME> \
  --control-plane-endpoint-host <xxx.yyy.zzz.000> \
  --data-center <DATACENTER_NAME> \
  --data-store <DATASTORE_NAME> \
  --folder <FOLDER_NAME> \
  --server <VCENTER_API_SERVER_UTR \
  --ssh-public-key-file <SSH_PUBLIC_KEY_FILE> \
  --resource-pool <RESOURE_POOL_NAME> \
  --vm-template <TEMPLATE_NAME>
CODE

4. (Optional) To configure the Control Plane and Worker nodes to use an HTTP proxy:

export CONTROL_PLANE_HTTP_PROXY=http://example.org:8080
export CONTROL_PLANE_HTTPS_PROXY=http://example.org:8080
export CONTROL_PLANE_NO_PROXY="example.org,example.com,example.net,localhost,127.0.0.1,10.96.0.0/12,192.168.0.0/16,kubernetes,kubernetes.default,kubernetes.default.svc,kubernetes.default.svc.cluster,kubernetes.default.svc.cluster.local,.svc,.svc.cluster,.svc.cluster.local,169.254.169.254,.elb.amazonaws.com"

export WORKER_HTTP_PROXY=http://example.org:8080
export WORKER_HTTPS_PROXY=http://example.org:8080
export WORKER_NO_PROXY="example.org,example.com,example.net,localhost,127.0.0.1,10.96.0.0/12,192.168.0.0/16,kubernetes,kubernetes.default,kubernetes.default.svc,kubernetes.default.svc.cluster,kubernetes.default.svc.cluster.local,.svc,.svc.cluster,.svc.cluster.local,169.254.169.254,.elb.amazonaws.com"
CODE

  • Replace example.org,example.com,example.net with you internal addresses

  • localhost and 127.0.0.1 addresses should not use the proxy

  • 10.96.0.0/12 is the default Kubernetes service subnet

  • 192.168.0.0/16 is the default Kubernetes pod subnet

  • kubernetes,kubernetes.default,kubernetes.default.svc,kubernetes.default.svc.cluster,kubernetes.default.svc.cluster.local is the internal Kubernetes kube-apiserver service

  • .svc,.svc.cluster,.svc.cluster.local is the internal Kubernetes services

  • 169.254.169.254 is the AWS metadata server

  • .elb.amazonaws.com is for the worker nodes to allow them to communicate directly to the kube-apiserver ELB

5. (Optional) Create a Kubernetes cluster with HTTP proxy configured. This step assumes you did not already create a cluster in the previous steps:

To increase Dockerhub's rate limit use your Dockerhub credentials when creating the cluster, by setting the following flag --registry-mirror-url=https://registry-1.docker.io --registry-mirror-username= --registry-mirror-password= on the dkp create cluster command.

dkp create cluster vsphere --cluster-name=${CLUSTER_NAME} \
--control-plane-http-proxy="${CONTROL_PLANE_HTTP_PROXY}" \
--control-plane-https-proxy="${CONTROL_PLANE_HTTPS_PROXY}" \
--control-plane-no-proxy="${CONTROL_PLANE_NO_PROXY}" \
--worker-http-proxy="${WORKER_HTTP_PROXY}" \
--worker-https-proxy="${WORKER_HTTPS_PROXY}" \
--worker-no-proxy="${WORKER_NO_PROXY}" \
--dry-run \
--output=yaml \
> ${CLUSTER_NAME}.yaml
CODE

6. Inspect or edit the cluster objects:

Familiarize yourself with Cluster API before editing the cluster objects as edits can prevent the cluster from deploying successfully.

The objects are Custom Resources defined by Cluster API components, and they belong in three different categories:

  1. Cluster

    A Cluster object has references to the infrastructure-specific and control plane objects. Because this is a vSphere cluster, there is an object that describes the infrastructure-specific cluster properties.

  2. Control plane

    A KubeadmControlPlane object describes the control plane, which is the group of machines that run the Kubernetes control plane components, which include the etcd distributed database, the API server, the core controllers, and the scheduler. The object describes the configuration for these components. The object also has a reference to an infrastructure-specific object that describes the properties of all control plane machines. Here, it references an vSphereMachineTemplate object.

  3. Node pool

    A node pool is a collection of machines with identical properties. For example, a cluster might have one node pool with large memory capacity, another node pool with GPU support. Each node pool is described by three objects: The MachinePool references an object that describes the configuration of Kubernetes components (for example, kubelet) deployed on each node pool machine, and an infrastructure-specific object that describes the properties of all node pool machines. Here, it references a KubeadmConfigTemplate, and a vSphereMachineTemplate object.

For in-depth documentation about the objects, read Concepts in the Cluster API Book.

7. Modify control plane audit logs settings using the information contained in the page Configuring the Control Plane.

8. Create the cluster from the objects.

kubectl apply -f ${CLUSTER_NAME}.yaml
CODE
cluster.cluster.x-k8s.io/vsphere-example created
cluster.infrastructure.cluster.x-k8s.io/vsphere-example created
kubeadmcontrolplane.controlplane.cluster.x-k8s.io/vsphere-example-control-plane created
machinedeployment.cluster.x-k8s.io/vsphere-example-mp-0 created
kubeadmconfigtemplate.bootstrap.cluster.x-k8s.io/vsphere-example-mp-0 created
CODE

8. Use the wait command to monitor the cluster control-plane readiness:

kubectl wait --for=condition=ControlPlaneReady "clusters/${CLUSTER_NAME}" --timeout=20m
CODE
cluster.cluster.x-k8s.io/${CLUSTER_NAME} condition met
CODE

The READY status becomes True after the cluster control-plane becomes Ready in one of the following steps.

After DKP creates the objects on the API server, the Cluster API controllers reconcile them, creating infrastructure and machines. As the controllers progress, they update the Status of each object.

9. Run the DKP describe command to monitor the current status of the cluster:

dkp describe cluster -c ${CLUSTER_NAME}
CODE

NAME                                                                READY  SEVERITY  REASON  SINCE  MESSAGE
Cluster/d2iq-e2e-cluster_name-1                                     True                     13h
├─ClusterInfrastructure - VSphereCluster/d2iq-e2e-cluster_name-1    True                     13h
├─ControlPlane - KubeadmControlPlane/d2iq-control-plane             True                     13h
│ ├─Machine/d2iq--control-plane-7llgd                               True                     13h
│ ├─Machine/d2iq--control-plane-vncbl                               True                     13h
│ └─Machine/d2iq--control-plane-wbgrm                               True                     13h
└─Workers
    └─MachineDeployment/d2iq--md-0                                  True                     13h
    ├─Machine/d2iq--md-0-74c849dc8c-67rv4                           True                     13h
    ├─Machine/d2iq--md-0-74c849dc8c-n2skc                           True                     13h
    ├─Machine/d2iq--md-0-74c849dc8c-nkftv                           True                     13h
    └─Machine/d2iq--md-0-74c849dc8c-sqklv                           True                     13h
CODE

10. Check all machines has NODE_NAME assigned

kubectl get machines
CODE

The output appears similar to the following:

NAME                                       CLUSTER              NODENAME                                       PROVIDERID                                       PHASE     AGE   VERSION
d2iq-e2e-cluster-1-control-plane-7llgd     d2iq-e2e-cluster-1   d2iq-e2e-cluster-1-control-plane-7llgd     vsphere://421638e2-e776-9af6-f683-5e105de5da5a   Running   13h   v1.22.8
d2iq-e2e-cluster-1-control-plane-vncbl     d2iq-e2e-cluster-1   d2iq-e2e-cluster-1-control-plane-vncbl     vsphere://42168835-7fef-95c4-3652-ebcad3e10d36   Running   13h   v1.22.8
d2iq-e2e-cluster-1-control-plane-wbgrm     d2iq-e2e-cluster-1   d2iq-e2e-cluster-1-control-plane-wbgrm     vsphere://421642df-afc4-b6c2-9e61-5b86e7c37eac   Running   13h   v1.22.8
d2iq-e2e-cluster-1-md-0-74c849dc8c-67rv4   d2iq-e2e-cluster-1   d2iq-e2e-cluster-1-md-0-74c849dc8c-67rv4   vsphere://4216f467-8483-73cb-a8b6-8d6a4a71e4b4   Running   14h   v1.22.8
d2iq-e2e-cluster-1-md-0-74c849dc8c-n2skc   d2iq-e2e-cluster-1   d2iq-e2e-cluster-1-md-0-74c849dc8c-n2skc   vsphere://42161cde-9904-4dd2-7a3e-cdfc7655f090   Running   14h   v1.22.8
d2iq-e2e-cluster-1-md-0-74c849dc8c-nkftv   d2iq-e2e-cluster-1   d2iq-e2e-cluster-1-md-0-74c849dc8c-nkftv   vsphere://42163a0d-eb8d-b5a6-82d5-188e24817c00   Running   14h   v1.22.8
d2iq-e2e-cluster-1-md-0-74c849dc8c-sqklv   d2iq-e2e-cluster-1   d2iq-e2e-cluster-1-md-0-74c849dc8c-sqklv   vsphere://42161dff-92a5-6da9-7ac1-e987e2c8fed2   Running   14h   v1.22.8
CODE

11. Verify that the kubeadm control plane is ready with the command

kubectl get kubeadmcontrolplane
CODE

The output appears similar to the following:

NAME                               CLUSTER              INITIALIZED   API SERVER AVAILABLE   REPLICAS   READY   UPDATED   UNAVAILABLE   AGE   VERSION
d2iq-e2e-cluster-1-control-plane   d2iq-e2e-cluster-1   true          true                   3          3       3         0             14h   v1.22.8
CODE

12. Describe the kubeadm control plane and check its status and events with the command:

kubectl describe kubeadmcontrolplane
CODE

13. As they progress, the controllers also create Events, which you can list using the command:

kubectl get events | grep ${CLUSTER_NAME}
CODE

For brevity, this example uses grep. You can also use separate commands to get Events for specific objects, such as kubectl get events --field-selector involvedObject.kind="VSphereCluster" and kubectl get events --field-selector involvedObject.kind="VSphereMachine".

Known limitations

Be aware of these limitations in the current release of DKP Konvoy.

  • The DKP Konvoy version used to create a bootstrap cluster must match the DKP Konvoy version used to create a workload cluster.

  • DKP Konvoy supports deploying one workload cluster.

  • DKP Konvoy generates a set of objects for one Node Pool.

  • DKP Konvoy does not validate edits to cluster objects.

The optional next step is to make the vSphere cluster self-managing. The step is optional because, as an example, if you are using an existing, self-managed cluster to create a managed cluster, you would not want the managed cluster to be self-managed.